鸿 网 互 联 www.68idc.cn

当前位置 : 服务器租用 > 编程语言开发 > erlang > >

Hashtable类源码解析

来源:互联网 作者:佚名 时间:2016-07-17 21:13
Hashtable特点 1.key-value键值对表示一个数据项 2.内部通过数组存储数据 3.实现了同步方法,线程安全,效率低 4.两个重要参数:初始容量(默认11),载入因子(默认0.75) 所在包 package java.util;import java. io .*; 继承Dictionary 实现Map、Cloneable

Hashtable特点
1.key-value键值对表示一个数据项
2.内部通过数组存储数据
3.实现了同步方法,线程安全,效率低
4.两个重要参数:初始容量(默认11),载入因子(默认0.75)

所在包

package java.util;
import java.io.*;

继承Dictionary
实现Map、Cloneable、java.io.Serializable

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable {

}

内部通过数组存储


    /**
     * 数组存储
     */
    private transient Entry<K,V>[] table;

    /**
     * 元素总个数
     */
    private transient int count;

    /**
     * 更新数组的阈值:  ((int)(capacity * loadFactor).)
     *
     * @serial
     */
    private int threshold;

    /**
     * 载入因子
     *
     * @serial
     */
    private float loadFactor;

    /**
     *修改次数
     */
    private transient int modCount = 0;

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = 1421746759512286392L;


    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

每个节点定义结构
定义好节点其前驱和后继也构建好


    /**
     * 节点定义
     */
    private static class Entry<K,V> implements Map.Entry<K,V> {
        int hash;
        final K key;
        V value;
        Entry<K,V> next;

        protected Entry(int hash, K key, V value, Entry<K,V> next) {
            this.hash = hash;
            this.key =  key;
            this.value = value;
            this.next = next;
        }

        protected Object clone() {
            return new Entry<>(hash, key, value,
                                  (next==null ? null : (Entry<K,V>) next.clone()));
        }

        // Map.Entry Ops

        public K getKey() {
            return key;
        }

        public V getValue() {
            return value;
        }

        public V setValue(V value) {
            if (value == null)
                throw new NullPointerException();

            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry)o;

            return key.equals(e.getKey()) && value.equals(e.getValue());
        }

        public int hashCode() {
            return (Objects.hashCode(key) ^ Objects.hashCode(value));
        }

        public String toString() {
            return key.toString()+"="+value.toString();
        }
    }

holds values which can’t be initialized until after VM is booted.


    /**
     * holds values which can't be initialized until after VM is booted.
     */
    private static class Holder {

        /**
         * Table capacity above which to switch to use alternative hashing.
         */
        static final int ALTERNATIVE_HASHING_THRESHOLD;

        static {
            String altThreshold = java.security.AccessController.doPrivileged(
                new sun.security.action.GetPropertyAction(
                    "jdk.map.althashing.threshold"));

            int threshold;
            try {
                threshold = (null != altThreshold)
                        ? Integer.parseInt(altThreshold)
                        : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;

                // disable alternative hashing if -1
                if (threshold == -1) {
                    threshold = Integer.MAX_VALUE;
                }

                if (threshold < 0) {
                    throw new IllegalArgumentException("value must be positive integer.");
                }
            } catch(IllegalArgumentException failed) {
                throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
            }

            ALTERNATIVE_HASHING_THRESHOLD = threshold;
        }
    }

随机种子


    /**
     * 随机种子
     */
    transient int hashSeed;

初始化


    /**
     * 初始化
     */
    final boolean initHashSeedAsNeeded(int capacity) {
        boolean currentAltHashing = hashSeed != 0;
        boolean useAltHashing = sun.misc.VM.isBooted() &&
                (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
        boolean switching = currentAltHashing ^ useAltHashing;
        if (switching) {
            hashSeed = useAltHashing
                ? sun.misc.Hashing.randomHashSeed(this)
                : 0;
        }
        return switching;
    }

四个构造函数


    /**
     * 构造函数
     *
     * @param      initialCapacity   the initial capacity of the hashtable.
     * @param      loadFactor        the load factor of the hashtable.
     * @exception  IllegalArgumentException  if the initial capacity is less
     *             than zero, or if the load factor is nonpositive.
     */
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        initHashSeedAsNeeded(initialCapacity);
    }

    /**
     * 构造函数, default load factor (0.75).
     *
     * @param     initialCapacity   the initial capacity of the hashtable.
     * @exception IllegalArgumentException if the initial capacity is less
     *              than zero.
     */
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

    /**
     * 构造函数 default initial capacity (11)
     * and load factor (0.75).
     */
    public Hashtable() {
        this(11, 0.75f);
    }

    /**
     * 构造函数,t 中元素复制到该map 中  default load factor (0.75).
     *
     * @param t the map whose mappings are to be placed in this map.
     * @throws NullPointerException if the specified map is null.
     * @since   1.2
     */
    public Hashtable(Map<? extends K, ? extends V> t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }

size,isEmpty,keys,values


    /**
     * 元素个数
     * @return  the number of keys in this hashtable.
     */
    public synchronized int size() {
        return count;
    }

    /**
     * 是否空 
     *
     * @return  <code>true</code> if this hashtable maps no keys to values;
     *          <code>false</code> otherwise.
     */
    public synchronized boolean isEmpty() {
        return count == 0;
    }

    /**
     * 返回key的枚举值 
     */
    public synchronized Enumeration<K> keys() {
        return this.<K>getEnumeration(KEYS);
    }

    /**
     * 返回value的枚举值 
     */
    public synchronized Enumeration<V> elements() {
        return this.<V>getEnumeration(VALUES);
    }

有关contains的方法


    /**
     * 是否包含 value的元素 
     * @param      value   a value to search for
     * @return     <code>true</code> if and only if some key maps to the
     *             <code>value</code> argument in this hashtable as
     *             determined by the <tt>equals</tt> method;
     *             <code>false</code> otherwise.
     * @exception  NullPointerException  if the value is <code>null</code>
     */
    public synchronized boolean contains(Object value) {
        if (value == null) {
            throw new NullPointerException();
        }

        Entry tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) { // 比较的是value 
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * 是否包含 value的元素 
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     * @throws NullPointerException  if the value is <code>null</code>
     * @since 1.2
     */
    public boolean containsValue(Object value) {
        return contains(value);
    }

    /**
     * 是否包含 key 的元素 
     *
     * @param   key   possible key
     * @return  <code>true</code> if and only if the specified object
     *          is a key in this hashtable, as determined by the
     *          <tt>equals</tt> method; <code>false</code> otherwise.
     * @throws  NullPointerException  if the key is <code>null</code>
     * @see     #contains(Object)
     */
    public synchronized boolean containsKey(Object key) {
        Entry tab[] = table;
        int hash = hash(key); //计算 hash值 
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { // 相同hash,内部通过链表实现
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }

获取key的value

    /**
     * 获取key的value 
     *
     * @param key the key whose associated value is to be returned
     * @return the value to which the specified key is mapped, or
     *         {@code null} if this map contains no mapping for the key
     * @throws NullPointerException if the specified key is null
     * @see     #put(Object, Object)
     */
    public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { // 相同hash,内部通过链表实现
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }

扩容
默认新增加的大小就是原始容量大小


    /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 增加容量,更新table数组
     */
    protected void rehash() {
        int oldCapacity = table.length;
        Entry<K,V>[] oldMap = table;

        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1; // 默认增加空间是原始容量的大小
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<K,V>[] newMap = new Entry[newCapacity];

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        boolean rehash = initHashSeedAsNeeded(newCapacity);

        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                if (rehash) {
                    e.hash = hash(e.key);
                }
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }

put、remove、clear、clone
put方法过程:先计算hashcode,找到对应index,插入所在链表的头部。


    /**
     * 加入元素
     * @param      key     the hashtable key
     * @param      value   the value
     * @return     the previous value of the specified key in this hashtable,
     *             or <code>null</code> if it did not have one
     * @exception  NullPointerException  if the key or value is
     *               <code>null</code>
     * @see     Object#equals(Object)
     * @see     #get(Object)
     */
    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }

        // Makes sure the key is not already in the hashtable.
        Entry tab[] = table;
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
            }
        }

        modCount++;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            hash = hash(key);
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // Creates the new entry.
        Entry<K,V> e = tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
        return null;
    }

    /**
     * 删除key对于元素 
     * @param   key   the key that needs to be removed
     * @return  the value to which the key had been mapped in this hashtable,
     *          or <code>null</code> if the key did not have a mapping
     * @throws  NullPointerException  if the key is <code>null</code>
     */
    public synchronized V remove(Object key) {
        Entry tab[] = table;
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }

    /**
     * 加入map t的元素 
     * @param t mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     * @since 1.2
     */
    public synchronized void putAll(Map<? extends K, ? extends V> t) {
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
            put(e.getKey(), e.getValue());
    }

    /**
     * 清空
     */
    public synchronized void clear() {
        Entry tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }

    /**
     *clone
     *
     * @return  a clone of the hashtable
     */
    public synchronized Object clone() {
        try {
            Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
            t.table = new Entry[table.length];
            for (int i = table.length ; i-- > 0 ; ) {
                t.table[i] = (table[i] != null)
                    ? (Entry<K,V>) table[i].clone() : null;
            }
            t.keySet = null;
            t.entrySet = null;
            t.values = null;
            t.modCount = 0;
            return t;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError();
        }
    }

输出字符串

    /**
     * 输出字符串
     *
     * @return  a string representation of this hashtable
     */
    public synchronized String toString() {
        int max = size() - 1;
        if (max == -1)
            return "{}";

        StringBuilder sb = new StringBuilder();
        Iterator<Map.Entry<K,V>> it = entrySet().iterator();

        sb.append('{');
        for (int i = 0; ; i++) {
            Map.Entry<K,V> e = it.next();
            K key = e.getKey();
            V value = e.getValue();
            sb.append(key   == this ? "(this Map)" : key.toString());
            sb.append('=');
            sb.append(value == this ? "(this Map)" : value.toString());

            if (i == max)
                return sb.append('}').toString();
            sb.append(", ");
        }
    }

获取枚举、获取迭代器

    // 获取枚举
    private <T> Enumeration<T> getEnumeration(int type) {
        if (count == 0) {
            return Collections.emptyEnumeration();
        } else {
            return new Enumerator<>(type, false);
        }
    }
    // 获取迭代器 
    private <T> Iterator<T> getIterator(int type) {
        if (count == 0) {
            return Collections.emptyIterator();
        } else {
            return new Enumerator<>(type, true);
        }
    }

实现了keySet、entrySet、values方法

    /**
     * Each of these fields are initialized to contain an instance of the
     * appropriate view the first time this view is requested.  The views are
     * stateless, so there's no reason to create more than one of each.
     */
    private transient volatile Set<K> keySet = null;
    private transient volatile Set<Map.Entry<K,V>> entrySet = null;
    private transient volatile Collection<V> values = null;

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     *
     * @since 1.2
     */
    public Set<K> keySet() {
        if (keySet == null)
            keySet = Collections.synchronizedSet(new KeySet(), this);
        return keySet;
    }

    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return getIterator(KEYS);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return Hashtable.this.remove(o) != null;
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    /**
     * Set<Map.Entry<K,V>>
     *
     * @since 1.2
     */
    public Set<Map.Entry<K,V>> entrySet() {
        if (entrySet==null)
            entrySet = Collections.synchronizedSet(new EntrySet(), this);
        return entrySet;
    }

    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return getIterator(ENTRIES);
        }

        public boolean add(Map.Entry<K,V> o) {
            return super.add(o);
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry)o;
            Object key = entry.getKey();
            Entry[] tab = table;
            int hash = hash(key);
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry e = tab[index]; e != null; e = e.next)
                if (e.hash==hash && e.equals(entry))
                    return true;
            return false;
        }

        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            K key = entry.getKey();
            Entry[] tab = table;
            int hash = hash(key);
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry<K,V> e = tab[index], prev = null; e != null;
                 prev = e, e = e.next) {
                if (e.hash==hash && e.equals(entry)) {
                    modCount++;
                    if (prev != null)
                        prev.next = e.next;
                    else
                        tab[index] = e.next;

                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }

        public int size() {
            return count;
        }

        public void clear() {
            Hashtable.this.clear();
        }
    }

    /**
     * values
     * @since 1.2
     */
    public Collection<V> values() {
        if (values==null)
            values = Collections.synchronizedCollection(new ValueCollection(),
                                                        this);
        return values;
    }

    private class ValueCollection extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return getIterator(VALUES);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

equals方法

    public synchronized boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
        Map<K,V> t = (Map<K,V>) o;
        if (t.size() != size())
            return false;

        try {
            Iterator<Map.Entry<K,V>> i = entrySet().iterator();
            while (i.hasNext()) {
                Map.Entry<K,V> e = i.next();
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(t.get(key)==null && t.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(t.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused)   {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

        return true;
    }

hashCode计算
通过迭代的方式计算,当前的hashcode是前面hashcode的累加和

    public synchronized int hashCode() {
        /*
         * This code detects the recursion caused by computing the hash code
         * of a self-referential hash table and prevents the stack overflow
         * that would otherwise result.  This allows certain 1.1-era
         * applets with self-referential hash tables to work.  This code
         * abuses the loadFactor field to do double-duty as a hashCode
         * in progress flag, so as not to worsen the space performance.
         * A negative load factor indicates that hash code computation is
         * in progress.
         */
        int h = 0;
        if (count == 0 || loadFactor < 0)
            return h;  // Returns zero

        loadFactor = -loadFactor;  // Mark hashCode computation in progress
        Entry[] tab = table;
        for (Entry<K,V> entry : tab)
            while (entry != null) {
                h += entry.hashCode();
                entry = entry.next;
            }
        loadFactor = -loadFactor;  // Mark hashCode computation complete

        return h;
    }

hashCode计算出来后,再和hashSeed 进行与运算

    // hash值 
    private int hash(Object k) {
        // hashSeed will be zero if alternative hashing is disabled.
        return hashSeed ^ k.hashCode();
    }

输入输出流


    /**
     * Save the state of the Hashtable to a stream (i.e., serialize it).
     *
     * @serialData The <i>capacity</i> of the Hashtable (the length of the
     *             bucket array) is emitted (int), followed by the
     *             <i>size</i> of the Hashtable (the number of key-value
     *             mappings), followed by the key (Object) and value (Object)
     *             for each key-value mapping represented by the Hashtable
     *             The key-value mappings are emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
        Entry<K, V> entryStack = null;

        synchronized (this) {
            // Write out the length, threshold, loadfactor
            s.defaultWriteObject();

            // Write out length, count of elements
            s.writeInt(table.length);
            s.writeInt(count);

            // Stack copies of the entries in the table
            for (int index = 0; index < table.length; index++) {
                Entry<K,V> entry = table[index];

                while (entry != null) {
                    entryStack =
                        new Entry<>(0, entry.key, entry.value, entryStack);
                    entry = entry.next;
                }
            }
        }

        // Write out the key/value objects from the stacked entries
        while (entryStack != null) {
            s.writeObject(entryStack.key);
            s.writeObject(entryStack.value);
            entryStack = entryStack.next;
        }
    }

    /**
     * Reconstitute the Hashtable from a stream (i.e., deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
    {
        // Read in the length, threshold, and loadfactor
        s.defaultReadObject();

        // Read the original length of the array and number of elements
        int origlength = s.readInt();
        int elements = s.readInt();

        // Compute new size with a bit of room 5% to grow but
        // no larger than the original size.  Make the length
        // odd if it's large enough, this helps distribute the entries.
        // Guard against the length ending up zero, that's not valid.
        int length = (int)(elements * loadFactor) + (elements / 20) + 3;
        if (length > elements && (length & 1) == 0)
            length--;
        if (origlength > 0 && length > origlength)
            length = origlength;

        Entry<K,V>[] newTable = new Entry[length];
        threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
        count = 0;
        initHashSeedAsNeeded(length);

        // Read the number of elements and then all the key/value objects
        for (; elements > 0; elements--) {
            K key = (K)s.readObject();
            V value = (V)s.readObject();
            // synch could be eliminated for performance
            reconstitutionPut(newTable, key, value);
        }
        this.table = newTable;
    }

    /**
     * The put method used by readObject. This is provided because put
     * is overridable and should not be called in readObject since the
     * subclass will not yet be initialized.
     *
     * <p>This differs from the regular put method in several ways. No
     * checking for rehashing is necessary since the number of elements
     * initially in the table is known. The modCount is not incremented
     * because we are creating a new instance. Also, no return value
     * is needed.
     */
    private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
        throws StreamCorruptedException
    {
        if (value == null) {
            throw new java.io.StreamCorruptedException();
        }
        // Makes sure the key is not already in the hashtable.
        // This should not happen in deserialized version.
        int hash = hash(key);
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                throw new java.io.StreamCorruptedException();
            }
        }
        // Creates the new entry.
        Entry<K,V> e = tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
    }

枚举迭代器

 /**
     * Enumerator 实现了  Enumeration  Iterator
     * 枚举迭代器 
     */
    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
        Entry[] table = Hashtable.this.table;
        int index = table.length;
        Entry<K,V> entry = null;
        Entry<K,V> lastReturned = null;
        int type;

        /**
         * Indicates whether this Enumerator is serving as an Iterator
         * or an Enumeration.  (true -> Iterator).
         */
        boolean iterator;

        /**
         * The modCount value that the iterator believes that the backing
         * Hashtable should have.  If this expectation is violated, the iterator
         * has detected concurrent modification.
         */
        protected int expectedModCount = modCount;

        Enumerator(int type, boolean iterator) {
            this.type = type;
            this.iterator = iterator;
        }

        public boolean hasMoreElements() {
            Entry<K,V> e = entry;
            int i = index;
            Entry[] t = table;
            /* Use locals for faster loop iteration */
            while (e == null && i > 0) {
                e = t[--i];
            }
            entry = e;
            index = i;
            return e != null;
        }

        public T nextElement() {
            Entry<K,V> et = entry;
            int i = index;
            Entry[] t = table;
            /* Use locals for faster loop iteration */
            while (et == null && i > 0) {
                et = t[--i];
            }
            entry = et;
            index = i;
            if (et != null) {
                Entry<K,V> e = lastReturned = entry;
                entry = e.next;
                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
            }
            throw new NoSuchElementException("Hashtable Enumerator");
        }

        // Iterator methods
        public boolean hasNext() {
            return hasMoreElements();
        }

        public T next() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            return nextElement();
        }

        public void remove() {
            if (!iterator)
                throw new UnsupportedOperationException();
            if (lastReturned == null)
                throw new IllegalStateException("Hashtable Enumerator");
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            synchronized(Hashtable.this) {
                Entry[] tab = Hashtable.this.table;
                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

                for (Entry<K,V> e = tab[index], prev = null; e != null;
                     prev = e, e = e.next) {
                    if (e == lastReturned) {
                        modCount++;
                        expectedModCount++;
                        if (prev == null)
                            tab[index] = e.next;
                        else
                            prev.next = e.next;
                        count--;
                        lastReturned = null;
                        return;
                    }
                }
                throw new ConcurrentModificationException();
            }
        }
    }
网友评论
<