鸿 网 互 联 www.68idc.cn

当前位置 : 服务器租用 > 编程语言开发 > c++ > >

PAT乙级1001

来源:互联网 作者:佚名 时间:2018-02-27 09:47
1001. 害死人不偿命的(3n+1)猜想 (15) 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,

1001. 害死人不偿命的(3n+1)猜想 (15)

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:

3

输出样例:

5
#include<iostream>
using namespace std;

int main()
{
    int n;
    int num=0;
    cin>>n;
    while(n!=1)
    {
        if(n%2==0)
            n=n/2;
        else
            n=(3*n+1)/2;
        num++;
    }
    cout<<num;

    return 0;
}

  

网友评论
<